On the onset of surface condensation: formation and transition mechanisms of condensation mode

نویسندگان

  • Qiang Sheng
  • Jie Sun
  • Qian Wang
  • Wen Wang
  • Hua Sheng Wang
چکیده

Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Modification of SPR Silver Nano-Chips by Alkaline Condensation of Aminopropyltriethoxysilane

The Silver SPR chip was modified by alkaline-silane condensation with aminopropyltriethoxysilane (APTES) in NaOH aqueous solution at different times. Silver sputtered slides coated with APTES were immersed in NaOH solution, enabling us to produce silver surfaces homogeneously covered with APTES. The surface properties of grafted APTES on sputtered silver surface as a occasion of time were studi...

متن کامل

HOT CRACK FORMATION IN PURE CU AND CU-30%ZN ALLOY DURING IN SITU SOLIDIFICATION

The hot cracking susceptibility can be determined by establishing the transition temperature between brittle and ductile fracture at high temperature tensile testing of in situ solidified samples. High temperature tensile properties were determined for commercial cathodic pure Cu and Cu- 30%Zn alloy. The transition temperatures for pure Cu and Cu-30%Zn were evaluated from ultimate tensile stres...

متن کامل

Study of an in situ carbocationic system formed from trityl chloride (Ph3CCl) as an efficient organocatalyst for the condensation of dimedone with arylaldehydes

Organocatalyst trityl chloride (Ph3CCl), by in situ formation of trityl carbocation with inherent instability, efficiently catalyzes the condensation of dimedone (5,5-dimethyl-1,3-cyclohexanedione) (2 equiv.) with arylaldehydes (1 equiv.) under solvent-free conditions to afford 9-aryl-1,8-dioxo-octahydroxanthenes in high to excellent yields and in relatively short reaction times. Formation of t...

متن کامل

Study of an in situ carbocationic system formed from trityl chloride (Ph3CCl) as an efficient organocatalyst for the condensation of dimedone with arylaldehydes

Organocatalyst trityl chloride (Ph3CCl), by in situ formation of trityl carbocation with inherent instability, efficiently catalyzes the condensation of dimedone (5,5-dimethyl-1,3-cyclohexanedione) (2 equiv.) with arylaldehydes (1 equiv.) under solvent-free conditions to afford 9-aryl-1,8-dioxo-octahydroxanthenes in high to excellent yields and in relatively short reaction times. Formation of t...

متن کامل

Modeling of A Single Turn Pulsating Heat Pipe based on Flow Boiling and Condensation Phenomena

Demand for high-performance cooling systems is one of the most challenging and virtual issues in the industry and Pulsating heat pipes are effective solutions for this concern. In the present study, the best predictor correlations of flow boiling and condensation are taken into account to model a single turn pulsating heat pipe mathematically. These considerations, result in derivation of more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016